
Name 
ChinYi Tsai 
Title 
Associate Professor 

Research areas 



cytsai@nuk.edu.tw; chinyitsai@hotmail.com 

Education 
Applied and Engineering Physics, Cornell University 

Career 
Senior Research Fellow, De Montfort University, UK(1995/09‒2002/09) 

Honor and Prizes 
Royal Visiting Scholarship (2000/01‒2000/06) 
<Publication Lists>
1. ChinYi Tsai, The effects of intraband and interband carriercarrier scattering on hotcarrier solar cells: A theoretical study of spectral hole burning, electronhole energy transfer, Auger recombination, and impactionization generation. Progress in Photovoltaics: Research and Applications, vol. 27, no. 5, pp. 433452, 2019.
2. C. H. Chen, J. D. Lai, C. Y. Tsai, S. W. Feng, T, H. Cheng, H. C. Wang, and L. W. Tu, Growth, characterization, and analysis of the nanostructures of ZnO:B thin films grown on ITO glass substrates by a LPCVD: a study on the effects of boron doping, J. Mater. Sci. Mater. Electron.,vol. 30, no. 6, pp. 56985605, 2019.
3. ChinYi Tsai, Theoretical model and simulation of carrier heating with effects of nonequilibrium hot phonons in semiconductor photovoltaic devices, Progress in Photovoltaics: Research and Applications, vol. 26, pp. 808824, 2018.
4. ChinYi Tsai, Absorption coefficients of silicon: A theoretical treatment, Journal of Applied Physics, vol. 123, 183103, 2018.
5. ChinYi Tsai and ChinYao Tsai, Tandem amorphous/microcrystalline silicon thinfilm solar modules: Developments of novel technologies, Solar Energy, vol. 170, pp. 419429, 2018.
6. ChinYi Tsai, Effects of longitudinal optical phonon lifetimes on hotcarrier solar cells: a theoretical study, Materials Research Express, vol. 5, 116206, 2018.
7. ChinYi Tsai, Optical gain coefficients of silicon: a theoretical study, Materials Research Express, vol. 5, 055901, 2018.
8. ChinYi Tsai, A theoretical model for calculating the effects of carrier heating with nonequilibrium hot phonons on semiconductor devices and the currentvoltage relations, Microelectronics Reliability, vol. 91, pp. 335–343, 2018.
9. ChinYi Tsai, JyongDi Lai, ShihWei Feng, ChienJung Huang, ChienHsun Chen, FannWei Yang, HsiangChen Wang and LiWei Tu, Growth and characterization of textured wellfaceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications, Beilstein J. Nanotechnol., vol. 8, pp. 19391945, 2017.
10. ChinYi Tsai, JyongDi Lai, ShihWei Feng, ChienHsun Chen, FannWei Yang, HsiangChen Wang, LiWei Tu, Characterizations and growth of textured wellfaceted ZnO films by lowpressure chemical vapor deposition on ITO glass substrates, Superlattices and Microstructures, vol. 111, pp. 10731081, 2017.
11. ChinYi Tsai and ChinYao Tsai, Development of tandem amorphous/microcrystalline silicon thinfilm largearea seethrough color solar panels with reflective layer and 4Step laser scribing for buildingintegrated photovoltaic applications, Journal of Nanomaterials, Article ID 808261, 2014.
12. ShihWei Feng, ChihMing Lai, ChinYi Tsai, and LiWei Tu, Numerical simulations of the currentmatching effect and operation mechanisms on the performance of InGaN/Si tandem cells, Nanoscale Research Letters, Article ID 9:652, 2014.
13. ChinYi Tsai and ChinYao Tsai, Development of amorphous/microcrystalline silicon tandem thinfilm solar modules with low output voltage, high energy yield, low lightinduced degradation, and high dampheat reliability, Journal of Nanomaterials, Article ID 861741, 2014.
14. ChinYi Tsai, Theoretical study of the effects of carrier transport, capture, and escape processes on solar cells with embedded nanostructures, Journal of Nanomaterials, Article ID 972597, 2014.
15. S. W. Feng, C. M. Lai, C. Y. Tsai, Y. R. Su, and L. W. Tu, “Modeling of InGaN pn junction solar cells,” Optical Materials Express, vol. 3, pp. 17771788, 2013.
16. (Invited Article) C. Y. Tsai and C. Y. Tsai, “High energy yield lowvoltage silicon thinfilm solar modules,” Phys. Status Solidi c, vol. 8, pp. 29862989, 2011.
17. S. W. Feng, H. C. Lin, J. I. Chyi, C. Y. Tsai, C. J. Huang, H. C. Wang, F. W. Yang, and Y. S, Lin, “The impact of trimethylindium treatment during growth interruption on the carrier dynamics of InGaN/GaN multiple quantum wells,” Thin Solid Films, vol. 519, pp. 60926096, 2011.
18. S. W. Feng, C. Y. Tsai, H. C. Wang, H. C.Lin, and J. I. Chyi, “Optical properties of InGaAs/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Crystal Growth, vol. 325, pp. 4145, 2011.
19. H. C. Wang, S. W. Feng, T. Malinauskas, K. Jarasiunas, C. C. Ting, S. Liu, and C. Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films, vol. 518, pp. 72917294, 2010.
20. C. Yi. Tsai and C. Yao Tsai, “Effects of carrier escape and capture processes on quantum well solar cells: a theoretical investigation,” IET Optoelectronics, vol. 3, pp. 300304, 2009.
21. C. Y Tsai, “Theoretical model for the optical gain coefficient of indirectbandgap semiconductors,” J. Appl. Phys. vol. 99, 053506, 2006.
22. S. W. Feng, C. Y. Tsai, Y. C. Cheng, C. C. Liao, C. C. Yang, Y. S. Lin, K. J. Ma, and J. I. Chyi, “Phononreplica transition in InGaN/GaN quantum well structures,” Optic. and Quantum Electron., vol. 34, pp. 12131218, 2002.
23. C. Y. Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and C. C. Yang, "SPICE Circuit Models for Semiconductor Lasers with Effects of Carrier and Lattice Heating," Optoelectronic Materials and Devices II, Proceedings of SPIE, vol. 4078, pp. 353364, 2000.
24. C. Y Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and J. M. Rorison, “Theoretical modeling of carrier and lattice heating effects for frequency chirping in semiconductor lasers,” Appl. Phys. Lett., vol. 74, pp. 917919, 1999.
25. C. Y. Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and J. M. Rorison, “Theoretical modeling of the smallsignal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductor lasers,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 596605, 1999.
26. C. Y. Tsai, C. H. Chen, T. Li. Sung, C. Y. Tsai, and J. M. Rorison, "Theoretical modeling of nonequilibrium optical phonons and electron energy relaxation in GaN,” J. Appl. Phys., vol. 85, pp. 14751480, 1999.
27. C. Y. Tsai, C. Y, Tsai, C. H. Chen, T. L. Sung, T. Y. Wu, and F. P. Shih, “Theoretical Model for intravalley and intervalley free carrier absorption in semiconductor lasers: beyond the classical Drude model,” IEEE J. Quantum Electron., vol. 34, pp. 552558, 1998.
28. C. Y. Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and J. M. Rorison, “Theoretical modeling of the frequency response of the carrier and lattice temperatures with nonequilibrium optical phonons in semiconductor lasers,” Electron. Lett. vol. 34, pp. 23372339, 1998.
29. C. Y. Tsai, F. P. Shih, T. L. Sung, C. H. Chen, T. Y. Wu, and C. Y. Tsai, “Effects of carrier heating, nonequilibrium LO phonons, and lattice heating on the smallsignal modulation response of semiconductor lasers,” IEE Proc.Optoelectronics, vol. 145, pp. 1320, 1998.
30. C. Y. Tsai, C. Y. Tsai, C. H. Chen, T. L. Sung, F. P. Shih, and T. Y. Wu, “Theoretical model for studying hot phonon effects and electron energy relaxation in GaN: The roles of A1 mode and E1 mode optical phonons,” Optoelectronic Materials and Devices, Proc. SPIE, vol. 3419, pp. 310316, 1998.
31. C. Y. Tsai, F. P. Shih, C. H. Chen, T. L. Sung, T. Y. Wu, and C. Y. Tsai, “Thermal modeling in semiconductor lasers by incorporating the effects of carrier heating, nonequilibrium optical phonons, and thermal conduction of acoustic phonons,” Optoelectronic Materials and Devices, Proc. SPIE, vol. 3419, pp. 399421, 1998.
32. C. Y. Tsai, T. Y. Wu, C. H. Chen, T. L. Sung, F. P. Shih and C. Y. Tsai, “Hotcarrier effects on secondorder harmonic distortion of directly modulated semiconductor lasers: A theoretical investigation,” Optical Fiber Communication, Proc. SPIE, vol. 3420, pp. 330336, 1998.
33. C. Y. Tsai, F. P. Shih, C. H. Chen, T. Y. Wu, T. L. Sung, and C.Y. Tsai, “Effects of electronhole energy transfer on the nonlinear gain coefficients in the smallsignal modulation response of semiconductor lasers,” Appl. Phys. Lett., vol. 71, pp. 17471749, 1997.
34. C. Y. Tsai, F. P. Shih, T. L. Sung, T. Y. Wu, C. H. Chen, and C.Y. Tsai, “A small signal analysis on the modulation response of highspeed quantumwell lasers: effects of spectral hole burning, carrier heating, and carrier diffusioncaptureescape,” IEEE J. Quantum Electron., vol. 33, pp. 20842096, 1997.
35. C. Y. Tsai and C. Y. Tsai, “Effects of carrier heating on the frequency chirping of semiconductor lasers,” Electron. Lett., vol. 33, pp. 20432045, 1997.
36. R. M. Spencer, J. Greenberg, L. F. Eastman, C. Y. Tsai, and S. S. O’Keefe, “Highspeed direct modulation of semiconductor lasers,” International J. High Speed Electronics and Systems, vol. 8, pp. 4180, 1997.
37. C. Y. Tsai and C. Y. Tsai, “Carrier density depinning above threshold in semiconductor lasers: effects of carrier heating and spectral hole burning,” IEE Proc.Optoelectronics, vol. 144, pp. 209212, 1997.
38. C. Y. Tsai, C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Nonlinear gain coefficients in semiconductor lasers: effects of carrier heating,” IEEE J. Quantum Electron., vol. 32, pp. 201212, 1996.
39. C. Y. Tsai, C. Y. Tsai, Y. H. Lo, and R. M. Spencer, “Effects of spectral hole burning, carrier heating, and carrier transport on the smallsignal modulation response of quantum well lasers,” Appl. Phys. Lett., vol. 67, pp. 30843086, 1995.
40. C. Y. Tsai, C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Carrier energy relaxation time in quantum well lasers,” IEEE J. Quantum Electron., vol. 31, pp. 21482158, 1995.
41. C. Y. Tsai, Y. H. Lo, R. M. Spencer, and C. Y. Tsai, “Effects of hot phonons on carrier heating in quantum well lasers” IEEE Photon. Technol. Lett., vol. 7, pp. 950951, 1995.
42. C. Y. Tsai, C. Y. Tsai, Y. H. Lo, R. M. Spencer, and L. F. Eastman, “Nonlinear gain coefficients in semiconductor quantum well lasers: effects of carrier diffusion, capture, and escape,” IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 316330, 1995.
43. C. Y. Tsai, C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Carrier DC and AC capture and escape times in quantum well lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 599601, 1995.
44. C. Y. Tsai, L. F. Eastman, Y. H. Lo, and C. Y. Tsai, “Carrier capture and escape in multisubband quantum well lasers,” IEEE Photon. Technol. Lett., vol. 6, pp. 10881090, 1994.
45. C. Y. Tsai, L. F. Eastman, Y. H. Lo, and C. Y. Tsai, “Breakdown of thermionic emission theory for quantum wells,” Appl. Phys. Lett., vol. 65, pp. 469471, 1994.
46. C. Y. Tsai, L. F. Eastman, Y. H. Lo, and C. Y. Tsai, “Carrier energy relaxation rate in multisubband quantum well lasers with hot phonon effects,” J. Appl. Phys., vol. 76, pp. 53345338, 1994.
47. C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Hot carrier and hot phonon effects on highspeed quantum well lasers,” Appl. Phys. Lett., vol. 63, pp. 34083410, 1993.
48. E. Sweetland, C. Y. Tsai, B. A. Wintner, J. D. Brock, and R. E. Thorne, “Measurement of the charge densitywave correlation length in NbSe3 by highresolution xray scattering,” Phys. Rev. Lett., vol. 65, pp. 31653168, 1990.