Jump to the main content block

 

Prof. Chin-Yi Tsai

 

Chin-Yi Tsai 

Name

Chin-Yi Tsai

Title

Associate Professor

Research areas

 

 

E-mail

cytsai@nuk.edu.tw;

chinyitsai@hotmail.com

Education

Applied and Engineering Physics, Cornell University

Career

Senior Research Fellow, De Montfort University, UK(1995/09‒2002/09)

Honor and Prizes

Royal Visiting Scholarship (2000/01‒2000/06)

 

<Publication Lists>

1.      Chin-Yi Tsai, The effects of intraband and interband carrier-carrier scattering on hot-carrier solar cells: A theoretical study of spectral hole burning, electron-hole energy transfer, Auger recombination, and impact-ionization generation. Progress in Photovoltaics: Research and Applications, vol. 27, no. 5, pp. 433-452, 2019.

2.      C. H. Chen, J. D. Lai, C. Y. Tsai, S. W. Feng, T, H. Cheng, H. C. Wang, and L. W. Tu, Growth, characterization, and analysis of the nanostructures of ZnO:B thin films grown on ITO glass substrates by a LPCVD: a study on the effects of boron doping, J. Mater. Sci. Mater. Electron.,vol. 30, no. 6, pp. 5698-5605, 2019.

3.      Chin-Yi Tsai, Theoretical model and simulation of carrier heating with effects of nonequilibrium hot phonons in semiconductor photovoltaic devices, Progress in Photovoltaics: Research and Applications, vol. 26, pp. 808-824, 2018.

4.      Chin-Yi Tsai, Absorption coefficients of silicon: A theoretical treatment, Journal of Applied Physics, vol. 123, 183103, 2018.

5.      Chin-Yi Tsai and Chin-Yao Tsai, Tandem amorphous/microcrystalline silicon thin-film solar modules: Developments of novel technologies, Solar Energy, vol. 170, pp. 419-429, 2018.

6.      Chin-Yi Tsai, Effects of longitudinal optical phonon lifetimes on hot-carrier solar cells: a theoretical study, Materials Research Express, vol. 5, 116206, 2018.

7.      Chin-Yi Tsai, Optical gain coefficients of silicon: a theoretical study, Materials Research Express, vol. 5, 055901, 2018.

8.      Chin-Yi Tsai, A theoretical model for calculating the effects of carrier heating with nonequilibrium hot phonons on semiconductor devices and the current-voltage relations, Microelectronics Reliability, vol. 91, pp. 335–343, 2018.

9.      Chin-Yi Tsai, Jyong-Di Lai, Shih-Wei Feng, Chien-Jung Huang, Chien-Hsun Chen, Fann-Wei Yang, Hsiang-Chen Wang and Li-Wei Tu, Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications, Beilstein J. Nanotechnol., vol. 8, pp. 1939-1945, 2017.

10.  Chin-Yi Tsai, Jyong-Di Lai, Shih-Wei Feng, Chien-Hsun Chen, Fann-Wei Yang, Hsiang-Chen Wang, Li-Wei Tu, Characterizations and growth of textured well-faceted ZnO films by low-pressure chemical vapor deposition on ITO glass substrates, Superlattices and Microstructures, vol. 111, pp. 1073-1081, 2017.

11.  Chin-Yi Tsai and Chin-Yao Tsai, Development of tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar panels with reflective layer and 4-Step laser scribing for building-integrated photovoltaic applications, Journal of Nanomaterials, Article ID 808261, 2014.

12.  Shih-Wei Feng, Chih-Ming Lai, Chin-Yi Tsai, and Li-Wei Tu, Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells, Nanoscale Research Letters, Article ID 9:652, 2014.

13.  Chin-Yi Tsai and Chin-Yao Tsai, Development of amorphous/microcrystalline silicon tandem thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability, Journal of Nanomaterials, Article ID 861741, 2014.

14.  Chin-Yi Tsai, Theoretical study of the effects of carrier transport, capture, and escape processes on solar cells with embedded nanostructures, Journal of Nanomaterials, Article ID 972597, 2014.

15.  S. W. Feng, C. M. Lai, C. Y. Tsai, Y. R. Su, and L. W. Tu, “Modeling of InGaN p-n junction solar cells,” Optical Materials Express, vol. 3, pp. 1777-1788, 2013.

16.  (Invited Article) C. Y. Tsai and C. Y. Tsai, “High energy yield low-voltage silicon thin-film solar modules,” Phys. Status Solidi c, vol. 8, pp. 2986-2989, 2011.

17.  S. W. Feng, H. C. Lin, J. I. Chyi, C. Y. Tsai, C. J. Huang, H. C. Wang, F. W. Yang, and Y. S, Lin, “The impact of trimethylindium treatment during growth interruption on the carrier dynamics of InGaN/GaN multiple quantum wells,” Thin Solid Films, vol. 519, pp. 6092-6096, 2011.

18.  S. W. Feng, C. Y. Tsai, H. C. Wang, H. C.Lin, and J. I. Chyi, “Optical properties of InGaAs/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Crystal Growth, vol. 325, pp. 41-45, 2011.

19.  H. C. Wang, S. W. Feng, T. Malinauskas, K. Jarasiunas, C. C. Ting, S. Liu, and C. Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films, vol. 518, pp. 7291-7294, 2010.

20.  C. Yi. Tsai and C. Yao Tsai, “Effects of carrier escape and capture processes on quantum well solar cells: a theoretical investigation,” IET Optoelectronics, vol. 3, pp. 300-304, 2009.

21.  C. Y Tsai, “Theoretical model for the optical gain coefficient of indirect-bandgap semiconductors,” J. Appl. Phys. vol. 99, 053506, 2006.

22.  S. W. Feng, C. Y. Tsai, Y. C. Cheng, C. C. Liao, C. C. Yang, Y. S. Lin, K. J. Ma, and J. I. Chyi, “Phonon-replica transition in InGaN/GaN quantum well structures,” Optic. and Quantum Electron., vol. 34, pp. 1213-1218, 2002.

23.  C. Y. Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and C. C. Yang, "SPICE Circuit Models for Semiconductor Lasers with Effects of Carrier and Lattice Heating," Optoelectronic Materials and Devices II, Proceedings of SPIE, vol. 4078, pp. 353-364, 2000.

24.  C. Y Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and J. M. Rorison, “Theoretical modeling of carrier and lattice heating effects for frequency chirping in semiconductor lasers,” Appl. Phys. Lett., vol. 74, pp. 917-919, 1999.

25.  C. Y. Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and J. M. Rorison, “Theoretical modeling of the small-signal modulation response of carrier and lattice temperatures with the dynamics of nonequilibrium optical phonons in semiconductor lasers,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 596-605, 1999.

26.  C. Y. Tsai, C. H. Chen, T. Li. Sung, C. Y. Tsai, and J. M. Rorison, "Theoretical modeling of nonequilibrium optical phonons and electron energy relaxation in GaN,” J. Appl. Phys., vol. 85, pp. 1475-1480, 1999.

27.  C. Y. Tsai, C. Y, Tsai, C. H. Chen, T. L. Sung, T. Y. Wu, and F. P. Shih, “Theoretical Model for intravalley and intervalley free carrier absorption in semiconductor lasers: beyond the classical Drude model,” IEEE J. Quantum Electron., vol. 34, pp. 552-558, 1998.

28.  C. Y. Tsai, C. H. Chen, T. L. Sung, C. Y. Tsai, and J. M. Rorison, “Theoretical modeling of the frequency response of the carrier and lattice temperatures with nonequilibrium optical phonons in semiconductor lasers,” Electron. Lett. vol. 34, pp. 2337-2339, 1998.

29.  C. Y. Tsai, F. P. Shih, T. L. Sung, C. H. Chen, T. Y. Wu, and C. Y. Tsai, “Effects of carrier heating, nonequilibrium LO phonons, and lattice heating on the small-signal modulation response of semiconductor lasers,” IEE Proc.-Optoelectronics, vol. 145, pp. 13-20, 1998.

30.  C. Y. Tsai, C. Y. Tsai, C. H. Chen, T. L. Sung, F. P. Shih, and T. Y. Wu, “Theoretical model for studying hot phonon effects and electron energy relaxation in GaN: The roles of A1 mode and E1 mode optical phonons,” Optoelectronic Materials and Devices, Proc. SPIE, vol. 3419, pp. 310-316, 1998.

31.  C. Y. Tsai, F. P. Shih, C. H. Chen, T. L. Sung, T. Y. Wu, and C. Y. Tsai, “Thermal modeling in semiconductor lasers by incorporating the effects of carrier heating, nonequilibrium optical phonons, and thermal conduction of acoustic phonons,” Optoelectronic Materials and Devices, Proc. SPIE, vol. 3419, pp. 399-421, 1998.

32.  C. Y. Tsai, T. Y. Wu, C. H. Chen, T. L. Sung, F. P. Shih and C. Y. Tsai, “Hot-carrier effects on second-order harmonic distortion of directly modulated semiconductor lasers: A theoretical investigation,” Optical Fiber Communication, Proc. SPIE, vol. 3420, pp. 330-336, 1998.

33.  C. Y. Tsai, F. P. Shih, C. H. Chen, T. Y. Wu, T. L. Sung, and C.Y. Tsai, “Effects of electron-hole energy transfer on the nonlinear gain coefficients in the small-signal modulation response of semiconductor lasers,” Appl. Phys. Lett., vol. 71, pp. 1747-1749, 1997.

34.  C. Y. Tsai, F. P. Shih, T. L. Sung, T. Y. Wu, C. H. Chen, and C.Y. Tsai, “A small signal analysis on the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape,” IEEE J. Quantum Electron., vol. 33, pp. 2084-2096, 1997.

35.  C. Y. Tsai and C. Y. Tsai, “Effects of carrier heating on the frequency chirping of semiconductor lasers,” Electron. Lett., vol. 33, pp. 2043-2045, 1997.

36.  R. M. Spencer, J. Greenberg, L. F. Eastman, C. Y. Tsai, and S. S. O’Keefe, “High-speed direct modulation of semiconductor lasers,” International J. High Speed Electronics and Systems, vol. 8, pp. 41-80, 1997.

37.  C. Y. Tsai and C. Y. Tsai, “Carrier density depinning above threshold in semiconductor lasers: effects of carrier heating and spectral hole burning,” IEE Proc.-Optoelectronics, vol. 144, pp. 209-212, 1997.

38.  C. Y. Tsai, C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Nonlinear gain coefficients in semiconductor lasers: effects of carrier heating,” IEEE J. Quantum Electron., vol. 32, pp. 201-212, 1996.

39.  C. Y. Tsai, C. Y. Tsai, Y. H. Lo, and R. M. Spencer, “Effects of spectral hole burning, carrier heating, and carrier transport on the small-signal modulation response of quantum well lasers,” Appl. Phys. Lett., vol. 67, pp. 3084-3086, 1995.

40.  C. Y. Tsai, C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Carrier energy relaxation time in quantum well lasers,” IEEE J. Quantum Electron., vol. 31, pp. 2148-2158, 1995.

41.  C. Y. Tsai, Y. H. Lo, R. M. Spencer, and C. Y. Tsai, “Effects of hot phonons on carrier heating in quantum well lasers” IEEE Photon. Technol. Lett., vol. 7, pp. 950-951, 1995.

42.  C. Y. Tsai, C. Y. Tsai, Y. H. Lo, R. M. Spencer, and L. F. Eastman, “Nonlinear gain coefficients in semiconductor quantum well lasers: effects of carrier diffusion, capture, and escape,” IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 316-330, 1995.

43.  C. Y. Tsai, C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Carrier DC and AC capture and escape times in quantum well lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 599-601, 1995.

44.  C. Y. Tsai, L. F. Eastman, Y. H. Lo, and C. Y. Tsai, “Carrier capture and escape in multisubband quantum well lasers,” IEEE Photon. Technol. Lett., vol. 6, pp. 1088-1090, 1994.

45.  C. Y. Tsai, L. F. Eastman, Y. H. Lo, and C. Y. Tsai, “Breakdown of thermionic emission theory for quantum wells,” Appl. Phys. Lett., vol. 65, pp. 469-471, 1994.

46.  C. Y. Tsai, L. F. Eastman, Y. H. Lo, and C. Y. Tsai, “Carrier energy relaxation rate in multisubband quantum well lasers with hot phonon effects,” J. Appl. Phys., vol. 76, pp. 5334-5338, 1994.

47.  C. Y. Tsai, L. F. Eastman, and Y. H. Lo, “Hot carrier and hot phonon effects on high-speed quantum well lasers,” Appl. Phys. Lett., vol. 63, pp. 3408-3410, 1993.

48.  E. Sweetland, C. Y. Tsai, B. A. Wintner, J. D. Brock, and R. E. Thorne, “Measurement of the charge density-wave correlation length in NbSe3 by high-resolution x-ray scattering,” Phys. Rev. Lett., vol. 65, pp. 3165-3168, 1990.

 

Click Num: