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U (x) = Aed@HRx 4 Be—iw+bx  for (0 < x < a)

uz(x) = Cel'B=Kx | pe=iB+thix for (—p < x < 0)

¥ (x) must be finite, single-valued, and continuous.
dy (x)/dx must be finite, single-valued, and continuous.
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(sinaa)(sin Bb) + (cosaa)(cos Bb) = cosk(a + b)

sinaa

+ cosaa = coska
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Figure 3.7 | The parabolic E versus &
curve for the free electron.
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(a) ®

Figure 3.14 { The £ versus & diagram of the conduction and valence bands of a
semiconductorat(a) T =0 Kand (b) T > 0 K.

When a conductor does not have a current through it. its conduction electrons

move randomly, with no net motion in any direction. When the conductor does
have a current through it, these electrons actually still move randomly, but now
they tend to drift with a drift speed v, in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 1075 or 107 m/s, whereas the
random-motion speeds are around 10° m/s.

or convenience, Fig. 26-5 shows the equivalent drift of positive charge carriers
in the direction of the applied clectric field E. Let us assume that these charge
carriers all move with the same drift speed v, and that the current density J is
uniform across the wire’s cross-sectional area A. The number of charge carriers
in a length L of the wire is nAL, where n is the number of carriers per unit
volume. The total charge of the carriers in the length L, each with charge e, is

then
q = (nAL)e.




Because the carriers all move along the wire with speed vy, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

;=9 _nALe
i=T=7 oy~ nAev,. (26-6)
Solving for v, and recalling Eq. 26-5 (J = i/A), we obtain
i J
vd = ———
nAe ne
or, extended to vector form,
T = (ne)v,. (26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m?), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that J and ¥;; have the same direction. For negative carriers, ne is negative and
J and V; have opposite directions.
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Fota = Fexy + Fin = ma

where m: rest ma:
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E - E. = Ci(k)

e allowed energy ba
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Figure 3.18 [ (a) Valence band with conventional electron-filled states and empty
states. (b) Concept of positive charges occupying the original cmply states.
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(E — E)) = —Cy(k)*
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Figure 3.21 | Two possible energy bands of a metal showing (a) a partially filled band
and (b) overlapping allowed energy bands.
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distribution function is thaf:
quantum states at any eneiigy

Vix,y.2) =0

Vix,y.z) = o0

= 2+t

forO<x <a
O<y<a
O<z<a

elsewhere
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E will be occupied by a
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Figure 3.27 | The Fermi probability
function versus energy for T = 0 K.
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Figure 3.28 | Discrete energy states
and quantum states for a particular
systemat T =0 K.
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Figure 3,30 Discrete energy states and | Figure 3.31 1 The Fermi probability function versus energy

quantum states for the same system for difierent temperatures.

shown in Figure 3.28 for 7 > O K.
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